

Health effects of internal alpha emitters, dosimetry

James Marsh and John Harrison

MELODI, Brussels 2013

- ICRP methodology for calculating doses from internal emitters
- Is 'effective dose' an adequate protection quantity for internal emitters?

Compare risks from alpha and external radiation

 Recent developments in ICRP methodology for internal dosimetry

Differences between internal and external dosimetry

- The source of irradiation is the decay of radionuclides in one or more of the organs of the body
- Internal doses can't be measured directly (and so models have to be used extensively)
- Internal doses are protracted over time
- Short range (non-penetrating) radiation (α, β, etc.) make a significant contribution to internal dose
- The distribution of absorbed dose between organs is often very inhomogeneous

3

Effective dose

- Applies to stochastic effects only
- Assumes no threshold
- Allows summation of doses from different radionuclides, and with external dose
- Allows comparison with dose limits / constraints

Calculation of equivalent and effective dose for internal emitters

Human Respiratory Tract Model (HRTM); ICRP 1994

7

ICRP systemic biokinetic model for plutonium

MIRD phantom

Effective dose applies to a reference person

8

Radiation weighting factors, $W_{\rm R}$

- $W_{\rm R}$ = 1 for all low-LET radiation (e.g. gamma)
- $W_{\rm R}$ = 20 for alpha particles for all types of cancer.
 - Based on relative biological effectiveness (RBE) of alpha particles compared to gamma

Tissue weighting factors, $W_{\rm T}$

Simple set of fractions which apply to all ages and both sexes.

Based on relative detriment of individual organs from stochastic effects

9

WW Public Health England	c Health and Detriment-adjusted nominal risk coefficients (10⁻² Sv⁻¹) ICRP Publicatio			
	Cancer	Hereditary	Total	
Worker	4.1	0.1	4.2	

Public	5.5	0.2	5.7

• Based on cancer incidence weighted for lethality and life impairment

• Cancer incidence derived from epidemiological studies of Japanese atomic bomb survivors exposed largely to gamma rays

Lung cancer risks

- Radon progeny
 - Uranium miner, and
 - Residential studies
- Plutonium workers
 Mayak nuclear facility, Russia

Gamma radiation - Japanese atomic bomb survivors

Radon Dosimetry

- The HRTM is used to calculate the absorbed dose to each of the 3 regions of the lung for a given exposure to radon progeny:
- bronchial region (BB)

$$\blacktriangleright D_{BB} = \frac{1}{2} (D_{bas} + D_{sec})$$

- bronchiolar region (bb)
- Alveolar-Interstitial region (AI)

WW Public Health England	Detriment-weighted absorbed lung dose from inhalation of radon progeny for a miner				
Region	Absorbed dose				
		(mGy/WLM)			
Bronchial					
$(D_{BB} = 0.5)$	$5 D_{sec} + 0.5 D_{bas}$)	6.7			
Bronchiol	lar (D _{bb})	7.0			
Alveolar	interstitial (D _{AI})	0.40			

Detriment-weighted absorbed lung dose,

D_{lung} = ⅓D_{BB} + ⅓D_{bb} + ⅓D_{AI} = 4.7 mGy per WLM
 ➢ Assume risk is equally partitioned between the 3 regions of lung

Plutonium dosimetry (MWDS-2008)

- Intakes and doses are assessed from urine data
- HRTM and systemic biokinetic model for plutonium model was implemented.
 - Absorbed dose to lung calculated as:
 - $= \frac{\text{Energy deposited in whole lung}}{\text{Mass of lung (1.1 kg)}} \approx \text{Dose to AI region}$

The dose to BB and bb regions were effectively ignored.

> However, most of dose is to AI region

Comparison of lung cancer risk estimates from alpha radiation for males

French uranium miner cohort (Rage et al. 2012) Detriment-weighted absorbed lung dose

ERR per Gy: 4.5 (95% CI: 1.3 – 11)

Mayak Workers (MWDS-2008) (Gilbert et al. 2013) Average absorbed lung dose (i.e. mass-weighted absorbed lung dose)

ERR per Gy at age 60: 7.4 (95% CI: 5.0 – 11)

Risks are consistent but the doses were calculated differently.

XXX
Public Health
England

Estimation of RBE values of alpha particles for induction lung cancer

Comparison with risk estimates from life span study (LSS) of Japanese A-bomb survivors.

French uranium miner cohort (Rage et al. 2012) Alpha: ERR per Gy: 4.5 (95% CI: 1.3 – 11) LSS mortality data Gamma: ERR per Sv: 0.48 (0.23-0.78) Inferred RBE: 9

Mayak Workers (MWDS-2008) (Gilbert et al. 2013) Alpha: ERR per Gy at age 60*: 7.0 (95% CI: 4.8 – 10) LSS mortality data Gamma: ERR per Sv: 0.36 (0.04-0.78) Inferred RBE: 19

*Based on analyses with common attained age parameter for Mayak and LSS

Comparison of lifetime excess absolute risk (LEAR) estimates

Risk model	Exposed	Lifetime lung cancer risk		Lung	Inferred
	population	(WLM^{-1})	(Gy^{-1})	detriment ^(a)	RBE
	(ICRP, 2007)		-	(Sv^{-1})	
Miner studies	Sex-averaged	$5.0 imes 10^{-4}$	0.12 ^(b)	1.21×10^{-2}	10
10111, 2010	Males	$7.0 imes 10^{-4}$	0.16 ^(b)	8.00×10^{-3}	21
Mayak workers Gilbert, et al., 2013	Males		0.15	8.00×10^{-3}	19

a) Values taken from ICRP Publication 103, (ICRP, 2007).

b) A detriment-weighted absorbed lung dose of 4.3 mGy WLM⁻¹ was calculated with the revised HRTM for a miner.

Mayak calculations (ICRP Task Group, Tirmarche et al.) LEAR up to age 90 y following a constant chronic intake of ²³⁹Pu oxide between the ages 18 y- 64 y.

ICRP developments in internal dosimetry

ICRP will provide new dose coefficients and bioassay quantities for inhalation and ingestion following the 2007 Recommendations (ICRP Publication 103)

- New human alimentary tract model (ICRP Publication 100)
- New systemic biokinetic models for some elements
- A revised human respiratory tract model
 - ➤ Longer retention in AI region for insoluble particles. → Greater lung dose
 - Review of lung-to-blood absorption characteristics of materials
- Adoption of male and female voxel phantoms
- Modification to the definition of effective dose
 - Sex-averaging in the calculation of effective dose

Voxel phantoms

19

- New male and female voxel phantoms
- New specific absorbed fractions (SAF)
- New nuclear data
- New S-coefficient (i.e. equivalent dose in target tissue per nuclear decay in source tissue

20 Health effects of internal alpha emitters, dosimetry

Main points (1)

- Regional lung dose distribution differs
 - Radon progeny: most to BB and bb regions (97%)
 - Plutonium: most to AI region (55% nitrates; 80% oxides)

 ERR per unit 'absorbed lung dose' of alpha radiation is similar for French uranium miner and Mayak worker studies

• However, to compare risks from radon progeny and plutonium calculate detriment-weighted absorbed lung dose.

- New dosimetry system for Mayak workers give doses that are a factor of ~2.5 higher for plutonium nitrates.
 - > this **may** lead to lower risks.
 - but still in agreement with risks estimates from radon progeny
- Comparison of lifetime risks from inhalation of radon progeny or plutonium with that from exposure to low-LET radiation indicate RBE values of 10 or 20
- A radiation factor, w_R of 20 for alpha particles seems reasonable for radiation protection purposes.

Thank you for your attention

Acknowledgements

ICRP C1-task group 64; Headed by Margot Tirmarche

calculated the lifetime risk estimates for alpha emitters