

Open Working Group Session on

Biomarkers of radiation sensitivity

Penny Jeggo, Laure Sabatier, Sarah Baatout

Biomarkers of Low dose – acute or chronic - Radiosensitivity.

Bioassays + genetic markers that can predict radiosensitivity.

+

bioassays that can monitor radiation exposure.

Transciprional profiling, proteomics and miRNA profiling have all said genes activated after low doses are distinct to those after high doses – therefore processes may be different and hence biomarkers may be different.

What do we mean by radiosensitivity

- Main impact of high dose radiation exposure is extensive cell or tissue damage
- For low doses there is unlikely to be extensive cell or tissue damage.
- .accumulative Tissue damage (eg heart)
- carcinogenesis
- senescence or shortened lifespan
- stress response leading to any of the above.
- Sensitivity at developmental stages or specific tissues— eg developing brain, cataracts

Multiple end-points.

- Multiple end points and multiple tissues
- Therefore there will not be a single biomarker
- Should we focus on certain responses NO obvious consensus to do this.
- Biomarkers may be superimposed on spontaneous effects eg FOXE biomarker for thyroid cancer.
- Multiple end points means that systems biology approaches may be useful to sort outthe relative contributions of the different processes.

Factors for consideration are:

- Will the damage/changes be accumulative
- Cell type for analysis are lymphocytes reflective – decided cell types are ok

What are the mechanisms/processes: (1)

DNA damage responses –

Although the role may differ to high doses, they should still be considered - ROS damage may be more significant.

If DNA damage persists longer it may activate signals for longer.

g-H2AX assay is a useful test and studies have shown they can detect sensitivity to chronic low dose exposure in A-T hets, eg.

High throughput and further endpoints of damage response signalling possible markers – but only likely to detect some aspect of sensitivity.

Can gH2AX foci predict over responders to chronic low dose IR

 Joel Bedford used gH2AX foci analysis following chronic low dose exposure of non-replicating fibroblasts

Used 10 cGy/h for 24 h. Then analysis of accumulated DSBs in Control, ATM-/- and ATM+/- cells (patient cells) and Rb+/- individuals

Kato, et al, DNA Repair 6, 818-829 (2007)

Activation of signalling: signalling responses may play a greater role than for high dose exposure

- Eg inflammatory response/cytokine signalling
 could be very important for eg tissue sensitivity TGFb or EGF15. eg correlation with heart disease.
- Need to understand more about the inflammatory response but if hyperactivation is a correlate then could identify predictive assays.
- Bystander response is it distinct from or same as inflammatory responses/cytokine signalling.
- This represents an important area for future research and for possibility of identifying/considering biomarkers

Activation of stress responses

- What do we mean by stress responses need to know more
- Release of ROS likely to be important
- Premature senescence is induced by chronic low dose exposure (Harms-Ringdahl) – could be due to activation of stress response – can this predict biomarkers.

Control cells exposure ot 5 and 15 mG/H show enhance premature senescence or loss of proliferation

Mouse studies

- Can provide information for mechanisms + examine utility of biomarkers.
- Eg possibility to use Gfp-tagged proteins that are activated by low dose exposure – can see in what tissues the gene is activated – hence help to identify optimal tissues/systems for analysis.
- Mice eg ptch mouse which shows sensitivity can be combined with other backgrounds to identify additional sensitivity genes

Sensitivity of different tissues

- Discussed this for developmental sensitivity
- Possible immune system cells can be exploited since very sensitive, easy to examine and may provide a good biomarker cell type.

Epidemiology

- Use of epidemiology to predict past exposure may be difficult if end points are transient – ie window of analysis.
- What populations are sensitivity to low dose exposure?
- Can be exploited more usefully when we have more mechanisms

Long term identification of biomarkers.

- Need to know more about the mechanisms conferring sensitivity
- Need to know exactly what end points are caused by low dose exposure – eg all (or specific) carcinogenesis, specific tumours, heart disease, developmental stages.
- Need to understand more about stress responses and inflammatory response and impact of ROS activation
- May need to identify markers that superimpose on a spontaneous level of the same end points (or activated by other stresses).

Long term techniques

- Omics approaches
- Biomonitoring of plasma/urine if metabolism altered in any way (short term exposure only maybe?).
- Markers of cytokine/stress signalling
- Systems biology because clearly a multisystem response

