Radiation exposures from CT scans in childhood and subsequent risk of leukaemia and brain tumours

Mark S. Pearce, PhD

Institute of Health&Society

CT scan history and usage

- A very useful tool
- Introduced in the early 1970's for head scanning
- Available worldwide at over 30,000 centres (and continuing to increase)
- 4% of all medical imaging examinations in the UK
- >40% of total collective dose to UK population from medical x-ray examinations

Usage in children

- Estimated that 5-10% of all CT exams are in children
 - Though varies by country
- Use has grown rapidly over the past two decades as procedures have become much faster

Why study young people?

- With their smaller mass, children tend to receive higher doses to specific organs
 - Great variability of doses, as procedures are not always adapted for young patients
 - Paediatric parameters are dependent on age and weight
 - Historically these parameters were often ignored
- Children have a longer remaining life span

What is known so far?

Generally:

- Other low dose exposures suggest increased cancer risks at the level of several CT scans
 - •E.g. Japanese A-bomb survivors, nuclear workers, patients with high numbers of X-rays

What is known so far?

Specific to CT:

- Mostly risk projection studies extrapolating 'expected' doses and 'expected' cancer risks
 i.e. no empirical data
- •Projections often limited to certain scans, mortality outcomes only and made assumptions regarding modern protocol adjustments that may not have been possible historically

The UK CT Scan Study

 Long-term sequelae of radiation exposure due to computed tomography in childhood and early adulthood

- Funders:
 - US National Cancer Institute
 - UK Department of Health

Why in the UK?

- National Health Service (NHS)
 - Free access to healthcare for all
 - CT scans performed primarily in public hospitals
- NHS Central Register
- National and regional cancer registries
- Ability to obtain 'umbrella consent' & ethics

Any drawbacks to doing it in the UK?

- Expensive matching processes compared to Scandinavian countries
 - But a much bigger country/patient group

- Lower usage of CT compared to countries such as the USA and Japan
 - But more difficult to do the data linkage in these countries

The Study

- Primary Objective
 - To assess the risk of subsequent cancers in individuals exposed via CT scanning during childhood or as young adults

Study protocol – phase 1

Cohort study

- Patients having one or more CT scans between 1985-2002
 - First scanned aged <22 years
 - Free from cancer at first CT

- Radiology departments with available electronic RIS data of sufficient quality
 - Film / paper records from small number of Trusts

Study protocol – phase 2

A nested case-control study to assess dose response more precisely

Cohort study dosimetry

- Date and type of scan, age and sex available from electronic RIS records
- Typical CT machine settings for young people taken from 2 UK-wide surveys (1989 and 2001)
- These data combined with those from hybrid computational phantoms and Monte Carlo radiation transport techniques to give estimated absorbed organ doses (e.g. red bone marrow)
- Cumulative doses where more than one CT scan

Outcome data

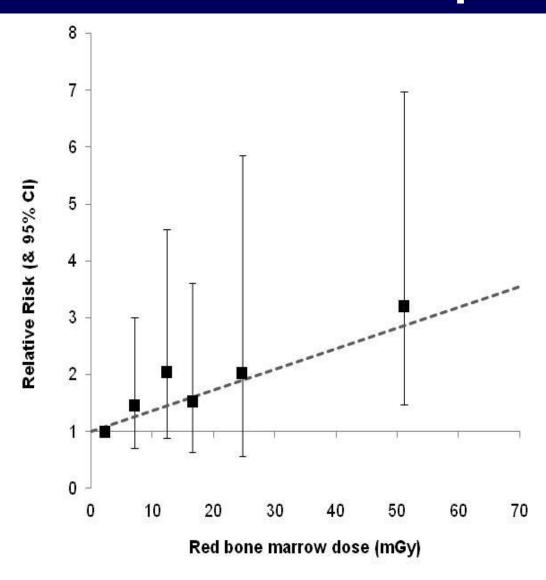
- RIS data linked with the NHSCR (1985-2008)
 - Cancer incidence
 - Mortality
 - Loss-to-follow-up (e.g. notified emigrations)
- Excluded patients with existing cancer and those diagnosed with leukaemia within 2 years of first CT scan (5 years for brain tumours)
 - Sensitivity analyses with greater years of exclusion

Statistical Methods

- Used Poisson relative risk models fitted by maximum likelihood methods.
- Accrual of person-time began 2 or 5 years after the initial CT scan
- Lag time of 2 or 5 years also included
 - Sensitivity with longer time periods

Results - descriptive

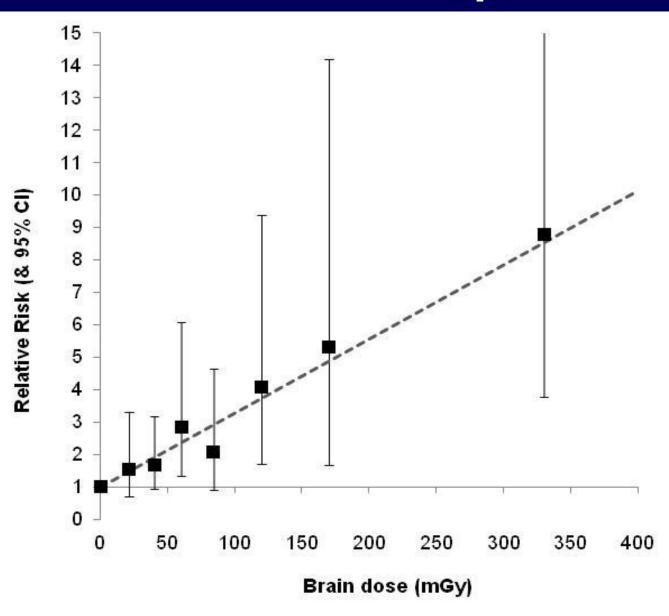
- Initial cohort, including cancer patients: 245,000
- Excluding those with cancer and those that could not be linked by NHSCR left 178,604 patients in the leukaemia analysis and 176,587 in the brain tumour analysis
- These patients had 280,000 CT scans, over 60% of which were of the head


Leukaemia - Excess relative risk per mGy organ-specific radiation doses received from CT scans

	Cases	ERR per mGy (95% CI)	p value (test for dose- response)
Red bone marrow dose			
All leukaemia, including myelodysplastic syndromes	74	0.0361 (0.0052 to 0.1198)	0.0097
Acute lymphoblastic leukaemia	26	1.719* (>0 to 17.73†)	0.0053
Acute myeloid leukaemia	18	0.0208 (-0.0415† to 0.1554)	0.2653
Myelodysplastic syndromes	9	6.098* (>0 to 145.4†)	0.0032
Leukaemia excluding myelodysplasmic syndromes	65	0.0187 (-0.0119† to 0.0794)	0.1436

^{*}Iteratively reweighted least-squares algorithm failed to converge, so parameter estimates might be unreliable.

[†] Calculated using Wald-based CI.


Leukaemia dose-response

Results for brain dose

	Cases	ERR per mGy (95% CI)	p value (test for dose- response)
All brain	135	0.0227 (0.0098 to 0.0494)	<0.0001
Glioma	65	0.0186 (0.0034 to 0.0703)	0.0033
Schwannoma meningioma	20	0.0331 (0.0019 to 0.4388)	0.0195

Brain dose-response

More on the results

- For leukaemia, dose-response did not vary between age at exposure, time since exposure, sex or any of the other covariates examined
- For brain tumours, the ERR increased with increasing age
- Little evidence of non-linearity of the doseresponse for either outcome

Main findings

 Significant associations between the estimated radiation doses to red bone marrow and brain and subsequent incidence of leukaemia and brain tumours respectively

Critical appraisal of our study

- We used empirical data
- Cohort approach avoided recall bias (exposure data from medical records)
- The UK has free-to-access healthcare. Thus we should have a fairly representative sample.
- Nationwide cancer registration
 - Cancer ascertainment estimated at 97%

Critical appraisal

- Patients not linked to registry records had similar characteristics to those included
- Our results are based on exposures in childhood or early adulthood
 - Not clear if we can extrapolate the results to adults
- Used a careful approach to avoid those with existing cancers

Critical appraisal

- Dosimetry was improved on previous estimates
 - Provided organ doses, but unable to obtain individual-level parameter data for such a large and historical cohort
- Uncertainties still exist
 - Not expected to bias the findings

Comparisons with the Life Span Study

- Similar dose estimates with childhood exposure and similar follow-up time (<15 years)
- Life Span Study for leukaemia:
 - ERR= 0.045/mSv (95%CI 0.016-0.188)
- Our study:
 - ERR= 0.036/mGy (95%CI 0.005-0.120)

Interpretation

- •Our results so far suggest that the risk of leukaemia is tripled with 5-10 head CTs in children aged under 15 years (based on 50mGy exposure)
 - And for brain tumours at 60mGy (2-3 head CTs)
- •For every 10,000 head CTs in under 10s, expect one excess case of leukaemia and one excess brain tumour in the 1st decade after 1st CT

Interpretation

- •The immediate benefits outweigh the (small) risks in most settings when CT is used appropriately
- •Of utmost importance is that, where CT is used, it should only be used where fully justified from a clinical perspective

International collaboration

- Similar studies underway in:
 - Canada, Australia, Sweden, Israel and France
 - EU-funded collaborative study (EPI-CT) began in 2011
 - UK, France, Spain, Germany, Denmark, Sweden, Netherlands, Belgium, Norway and Luxembourg,
- All studies are using a similar study design and collaborations are underway re dosimetry

Acknowledgments

Newcastle University, UK

- Jane Salotti
- Sir Alan Craft
- Nicola Howe
- Richard Hardy
- Wenhua Metcalf
- Claire-Louise Chapple
- Katharine Kirton

NCI

- Amy Berrington de González
- Choonsik Lee
- Mark Little
- Jay Lubin
- Preetha Rajamaran
- Elaine Ron
- Cecile Ronckers

Dalhousie University, Canada

Louise Parker

Great Ormond Street Hospital, London

Kieran McHugh

Kyung-Hee University, Korea

Kwang Pyo Kim