

MELODI Workshop 2013: new developments in dosimetry

The use of a graphics library in multisource modelling for out-of-field head scatter assessment

<u>Jérémi Vu Bezin^{1,2,3}</u>, Guillaume Auzac², Attila Veres⁴, Dimitri Lefkopoulos², Jean Chavaudra², André Bridier², Eric Deutsch^{2,5}, Florent de Vathaire^{1,2,3}, Ibrahima Diallo^{1,2,3}

¹Inserm, CESP Centre for Research In Epidemiology and Population Health, U1018, Radiation Epidemiology Team, F 94807, Villejuif, France

²Institut Gustave Roussy, Villejuif, F-94805, France

³Université Paris XI, Villejuif, F-94800, France

⁴Equal-Estro Laboratory, Villejuif, F-94805, France

⁵Inserm, UMR 1030 Radiothérapie moléculaire, F 94807, Villejuif, France

Out-of-field dose:

- Not modelled in TPS
- Clinical Application:
 - Dose at a specific volume: fetus, pacemaker, ovaries, testis
 - Remaining volume at risk (RVR) ICRU 83
- Epidemiology
 - Dose estimation in clinical irradiation reconstruction: secondary cancer, heart diseases

Out-of-field dose, the 3 main components

Focus of this study: collimator scattered photon dose

This study sole focus: collimator scattered photon dose

Leakage radiations

Scattered photons from the

Hypothesis:

The amount of scattered radiations reaching any point in the patient's plane and

the scattering surfaces of the beam limiting devices visible from this point are strongly correlated

Variations of the the scattering surfaces

- Field size
- Position of the point of interest
- Structure of the collimation elements of the linear accelerator :

Reference:

Lonski, P., Taylor, M. L., Franich, R. D., Harty, P., & Kron, T. (**2012**).

Assessment of leakage doses around the treatment heads of different linear accelerators.

Radiation protection dosimetry, 152(4), 304-312.

Programming a 3D scene for a multisource model

Programming language: C++

Graphics library: OpenGL[®]

- Standard computer: Intel® Core™ 2 Duo E8500 CPU (3.17 GHz)
 - -8 Gb of RAM
 - integrated Intel® Q45/Q43 express chipset graphic card

The components of the multisource model

The disk source:

- Direct photons
- Scattered photons from the primary collimator and the flattening filter

$$D_{src}(M) = \sum_{i=0}^{n} \delta_i \times \mathcal{A}_i(M)$$

The in-beam collimators surface:

 Scattered photons from the secondary and tertiary collimators

$$D_{coll}(M) = \sigma \times \sum_{j=1}^{l} \left[\mathcal{A}_{j}(M) \times D_{src_{j}} \times P(r_{j}, \theta_{j}) \right]$$

Parameters determination and model validation

TLD 700 and build-up caps for 25 MV and 6 MV

Reference : J. Vu Bezin et al. 2013 Phys. Med. Biol. (submitted – under review)

Calculated scattering surfaces devices distribution (10 cm \times 10 cm field)

Reference : J. Vu Bezin *et al.* 2013 Phys. Med. Biol. (submitted – under review)

Calculated collimator scatter dose distribution for two collimation systems (10 cm \times 10 cm field)

Reference: J. Vu Bezin et al. 2013 Phys. Med. Biol. (submitted – under review)

Calculated collimator scatter dose distribution for different energies (10 cm \times 10 cm field)

Reference: J. Vu Bezin et al. 2013 Phys. Med. Biol. (submitted – under review)

Calculated collimator scatter dose distribution for a complex fields

Reference: J. Vu Bezin et al. 2013 Phys. Med. Biol. (submitted – under review)

Agreement between calculations and measurements: gamma index

Dose-to-agreement: 15%

Distance-to-agreement: 1 cm 85% pass the test (145 points)

Conclusion

- The scattering surface visible from a point of interest and the amount of scattered radiations reaching this point are strongly correlated
- OpenGL is a suitable tool for multi-source modelling for medical linear accelerator collimator scatter assessment
- The 3D representation helps us to enhance our own perception
- Possibility to use the same framework for the other out-of-field component
- Ultimately, built a complete out-of-field dose estimation solution for integration in a TPS

Thank you for your attention.

